536 research outputs found

    Identification of a novel retroviral gene unique to human immunodeficiency virus type 2 and simian immunodeficiency virus SIVMAC

    Get PDF
    Human and simian immunodeficiency-associated retroviruses are extraordinarily complex, containing at least five genes, tat, art, sor, R, and 3' orf, in addition to the structural genes gag, pol, and env. Recently, nucleotide sequence analysis of human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus SIVMAC revealed the existence of still another open reading frame, termed X, which is highly conserved between these two viruses but absent from HIV-1. In this report, we demonstrate for the first time that the X open reading frame represents a functional retroviral gene in both HIV-2 and SIVMAC and that it encodes a virion-associated protein of 14 and 12 kilodaltons, respectively. We also describe the production of recombinant TrpE/X fusion proteins in Escherichia coli and show that sera from some HIV-2-infected individuals specifically recognize these proteins

    The 2010 AOP Workshop Summary Report

    Get PDF
    The rationale behind the current workshop, which was hosted by Biospherical Instruments Inc. (BSI), was to update the community and get community input with respect to the following: topics not addressed during the first workshop, specifically the processing of above-water apparent optical property (AOP data) within the Processing of Radiometric Observations of Seawater using Information Technologies (PROSIT) architecture; PROSIT data processing issues that have developed or tasks that have been completed, since the first workshop; and NASA instrumentation developments, both above- and in-water, that are relevant to both workshops and next generation mission planning. The workshop emphasized presentations on new AOP instrumentation, desired and required features for processing above-water measurements of the AOPs of seawater, working group discussions, and a community update for the in-water data processing already present in PROSIT. The six working groups were organized as follows: a) data ingest and data products; b) required and desired features for optically shallow and optically deep waters; c) contamination rejection (clouds), corrections, and data filtering; d) sun photometry and polarimetry; e) instrumentation networks; and f) hyperspectral versus fixed-wavelength sensors. The instrumentation networks working group was intended to provide more detailed information about desired and required features of autonomous sampling systems. Plenary discussions produced a number of recommendations for evolving and documenting PROSIT

    Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex Waters

    Get PDF
    This report documents new technology used to measure the apparent optical properties (AOPs) of optically complex waters. The principal objective is to be prepared for the launch of next-generation ocean color satellites with the most capable commercial off-the-shelf (COTS) instrumentation. An enhanced COTS radiometer was the starting point for designing and testing the new sensors. The follow-on steps were to apply the lessons learned towards a new in-water profiler based on a kite-shaped backplane for mounting the light sensors. The next level of sophistication involved evaluating new radiometers emerging from a development activity based on so-called microradiometers. The exploitation of microradiometers resulted in an in-water profiling system, which includes a sensor networking capability to control ancillary sensors like a shadowband or global positioning system (GPS) device. A principal advantage of microradiometers is their flexibility in producing, interconnecting, and maintaining instruments. The full problem set for collecting sea-truth data--whether in coastal waters or the open ocean-- involves other aspects of data collection that were improved for instruments measuring both AOPs and inherent optical properties (IOPs), if the uncertainty budget is to be minimized. New capabilities associated with deploying solar references were developed as well as a compact solution for recovering in-water instrument systems from small boats

    Optical Sensors for Planetary Radiant Energy (OSPREy): Calibration and Validation of Current and Next-Generation NASA Missions

    Get PDF
    A principal objective of the Optical Sensors for Planetary Radiance Energy (OSPREy) activity is to establish an above-water radiometer system as a lower-cost alternative to existing in-water systems for the collection of ground-truth observations. The goal is to be able to make high-quality measurements satisfying the accuracy requirements for the vicarious calibration and algorithm validation of next-generation satellites that make ocean color and atmospheric measurements. This means the measurements will have a documented uncertainty satisfying the established performance metrics for producing climate-quality data records. The OSPREy approach is based on enhancing commercial-off-the-shelf fixed-wavelength and hyperspectral sensors to create hybridspectral instruments with an improved accuracy and spectral resolution, as well as a dynamic range permitting sea, Sun, sky, and Moon observations. Greater spectral diversity in the ultraviolet (UV) will be exploited to separate the living and nonliving components of marine ecosystems; UV bands will also be used to flag and improve atmospheric correction algorithms in the presence of absorbing aerosols. The short-wave infrared (SWIR) is expected to improve atmospheric correction, because the ocean is radiometrically blacker at these wavelengths. This report describes the development of the sensors, including unique capabilities like three-axis polarimetry; the documented uncertainty will be presented in a subsequent report

    Advances in Above- and In-Water Radiometry, Volume 3: Hybridspectral Next-Generation Optical Instruments

    Get PDF
    This publication documents the scientific advances associated with new instrument systems and accessories built to improve above- and in-water observations of the apparent optical properties (AOPs) for a diversity of water masses, including optically complex waters. The principal objective is to be prepared for the launch of next-generation ocean color satellites with the most capable commercial off-the-shelf (COTS) instrumentation in the shortest time possible. The technologies described herein are entirely new hybrid sampling capabilities, so as to satisfy the requirements established for next-generation missions. Both above- and in-water instruments are documented with software options for autonomous control of data collection activities as applicable. The instruments were developed for the Hybridspectral Alternative for Remote Profiling of Optical Observations for NASA Satellites (HARPOONS) vicarious calibration project. The state-of-the-art accuracy required for vicarious calibration also led to the development of laboratory instruments to ensure the field observations were within uncertainty requirements. Separate detailed presentations of the individual instruments provide the hardware designs, accompanying software for data acquisition and processing, and examples of the results achieved

    Advances in Above- and In-Water Radiometry, Volume 2: Autonomous Atmospheric and Oceanic Observing Systems

    Get PDF
    This publication documents the scientific advances associated with new instrument systems and accessories built to improve above- and in-water observations of the apparent optical properties (AOPs) of optically complex waters. The principal objective is to be prepared for the launch of next-generation ocean color satellites with the most capable commercial off-the-shelf (COTS) instrumentation in the shortest time possible. The Hybridspectral Alternative for Remote Profiling of Optical Observations for NASA Satellites (HARPOONS) is presented as a case example of technologies conceived, developed, and deployed operationally in support of next-generation mission requirements. The field trials, field commissioning, and operational demonstration resulted in a technology readiness level (TRL) value of 9 for a diversity of laboratory and field instrument systems. Separate detailed presentations of the individual instruments provide the hardware designs, accompanying software for data acquisition and processing, and examples of the results achieved. For the laboratory components, calibration and characterization procedures are described along with an estimation of the sources of uncertainty, which culminates in a full uncertainty budget for the radiometers deployed to the field

    Advances in Above- and In-Water Radiometry, Volume 1: Enhanced Legacy and State-of-the-Art Instrument Suites

    Get PDF
    This publication documents the scientific advances associated with new instrument systems and accessories built to improve above- and in-water observations of the apparent optical properties (AOPs) of aquatic ecosystems. The perspective is to obtain high quality data in offshore, nearshore, and inland waters with equal efficacy. The principal objective is to be prepared for the launch of the next-generation ocean color satellites with the most capable commercial off-the-shelf (COTS) instrumentation in the shortest time possible. The technologies described herein are designed to either improve legacy radiometric systems or to provide entirely new hybrid sampling capabilities, so as to satisfy the requirements established for diverse remote sensing requirements. Both above- and in-water instrument suites are documented with software options for autonomous control of data collection activities. The latter includes an airborne instrument system plus unmanned surface vessel (USV) and buoy concepts

    Looking ahead: forecasting and planning for the longer-range future, April 1, 2, and 3, 2005

    Full text link
    This repository item contains a single issue of the Pardee Conference Series, a publication series that began publishing in 2006 by the Boston University Frederick S. Pardee Center for the Study of the Longer-Range Future. This was the Center's spring Conference that took place during April 1, 2, and 3, 2005.The conference allowed for many highly esteemed scholars and professionals from a broad range of fields to come together to discuss strategies designed for the 21st century and beyond. The speakers and discussants covered a broad range of subjects including: long-term policy analysis, forecasting for business and investment, the National Intelligence Council Global Trends 2020 report, Europe’s transition from the Marshal plan to the EU, forecasting global transitions, foreign policy planning, and forecasting for defense

    Airborne Mission Concept for Coastal Ocean Color and Ecosystems Research

    Get PDF
    NASA airborne missions in 2011 and 2013 over Monterey Bay, CA, demonstrated novel above- and in-water calibration and validation measurements supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The resultant airborne data characterize contemporaneous coastal atmospheric and aquatic properties plus sea-truth observations from state-of-the-art instrument systems spanning a next-generation spectral domain (320-875 nm). This airborne instrument suite for calibration, validation, and research flew at the lowest safe altitude (ca. 100 ft or 30 m) as well as higher altitudes (e.g., 6,000 ft or 1,800 m) above the sea surface covering a larger area in a single synoptic sortie than ship-based measurements at a few stations during the same sampling period. Data collection of coincident atmospheric and aquatic properties near the sea surface and at altitude allows the input of relevant variables into atmospheric correction schemes to improve the output of corrected imaging spectrometer data. Specific channels support legacy and next-generation satellite capabilities, and flights are planned to within 30 min of satellite overpass. This concept supports calibration and validation activities of ocean color phenomena (e.g., river plumes, algal blooms) and studies of water quality and coastal ecosystems. The 2011 COAST mission flew at 100 and 6,000 ft on a Twin Otter platform with flight plans accommodating the competing requirements of the sensor suite, which included the Coastal-Airborne In-situ Radiometers (C-AIR) for the first time. C-AIR (Biospherical Instruments Inc.) also flew in the 2013 OCEANIA mission at 100 and 1,000 ft on the Twin Otter below the California airborne simulation of the proposed NASA HyspIRI satellite system comprised of an imaging spectrometer and thermal infrared multispectral imager on the ER-2 at 65,000 ft (20,000 m). For both missions, the Compact-Optical Profiling System (Biospherical Instruments, Inc.), an in-water system with microradiometers matching C-AIR, was deployed to compare sea-truth measurements and low-altitude Twin Otter flights within Monterey Bay red tide events. This novel airborne and in-water sensor capability advances the science of coastal measurements and enables rapid response for coastal events

    Antenatal Determinants of Bronchopulmonary Dysplasia and Late Respiratory Disease in Preterm Infants

    Get PDF
    RATIONALE: Mechanisms contributing to chronic lung disease after preterm birth are incompletely understood. OBJECTIVES: To identify antenatal risk factors associated with increased risk for bronchopulmonary dysplasia (BPD) and respiratory disease during early childhood after preterm birth, we performed a prospective, longitudinal study of 587 preterm infants with gestational age less than 34 weeks and birth weights between 500 and 1,250 g. METHODS: Data collected included perinatal information and assessments during the neonatal intensive care unit admission and longitudinal follow-up by questionnaire until 2 years of age. MEASUREMENTS AND MAIN RESULTS: After adjusting for covariates, we found that maternal smoking prior to preterm birth increased the odds of having an infant with BPD by twofold (P = 0.02). Maternal smoking was associated with prolonged mechanical ventilation and respiratory support during the neonatal intensive care unit admission. Preexisting hypertension was associated with a twofold (P = 0.04) increase in odds for BPD. Lower gestational age and birth weight z-scores were associated with BPD. Preterm infants who were exposed to maternal smoking had higher rates of late respiratory disease during childhood. Twenty-two percent of infants diagnosed with BPD and 34% of preterm infants without BPD had no clinical signs of late respiratory disease during early childhood. CONCLUSIONS: We conclude that maternal smoking and hypertension increase the odds for developing BPD after preterm birth, and that maternal smoking is strongly associated with increased odds for late respiratory morbidities during early childhood. These findings suggest that in addition to the BPD diagnosis at 36 weeks, other factors modulate late respiratory outcomes during childhood. We speculate that measures to reduce maternal smoking not only will lower the risk for preterm birth but also will improve late respiratory morbidities after preterm birth
    • …
    corecore